111 research outputs found

    Life history of Aptesis nigrocincta (Hymenoptera: Ichneumonidae) a cocoon parasitoid of the apple sawfly, Hoplocampa testudinea (Hymenoptera: Tenthredinidae)

    Get PDF
    Aptesis nigrocincta Gravenhorst is a bivoltine ectoparasitoid of apple sawfly cocoons, hosts that must be found and parasitized by females at a depth of 10-25 cm in the soil. Females are significantly smaller than males and nearly wingless. After encountering a host, females needed 29.3 min at 20°C and 19.9 min at 25°C to deposit an egg on the host. Development from egg to adult took 39.6 days for females and 38.0 days for males at 20°C. This small difference was significant. At 20°C, the longevity of females that had no opportunity to oviposit was on average 72.5 days, significantly higher than male longevity (50.6 days). The longevity of females given access to hosts throughout their lifetime averaged 58.6 days. Females were able to mate immediately after emergence and copulation lasted on average 21.7 s. After a pre-oviposition period averaging 5.8 days, females laid 20.2 eggs during their lifetime, thus less than one egg per day. Neither the fecundity nor longevity of individual females was correlated with body size. If females were deprived of food, longevity as well as lifetime fecundity were drastically reduced. Field studies were carried out in one organically managed apple orchard in Switzerland. Aptesis nigrocincta showed parasitism rates ranging from 12.1 to 39.7 % within single parasitoid generations, thereby constituting the most important mortality factor of apple sawfly cocoon

    Harmonia axyridis: an environmental risk assessment for Northwest Europe

    Get PDF
    In this paper, we summarize the international situation with respect to environmental risk assessment for biological control agents. Next, we apply a recently designed, comprehensive risk evaluation method consisting of a stepwise procedure to evaluate the environmental risks of Harmonia axyridis in Northwest Europe. This resulted in the very clear conclusion that H. axyridis is a potentially risky species for Northwest Europe, because it is able to establish, it has a very wide host range including species from other insect orders and even beyond the class of Insecta, it may feed on plant materials, it can cover large distances (>50 km per year), it does move into non-target areas, it may attack many non-target species including beneficial insects and insects of conservation concern, its activities have resulted in the reduction of populations of native predators in North America, it is known as a nuisance in North America and recently also in Northwest Europe, and it may develop as a pest of fruit in North America. Considering the H. axyridis case, current knowledge would lead to the conclusion that, although the predator is capable to effectively control several pest species, its risks are manifold and it should, thus, not have been released in Northwest Europe. At the time of the first releases in Nortwest Europe in 1995, the available scientific literature made clear that H. axyridis is a large sized polyphagous predator and has a great reproductive capacity in comparison with other ladybird beetles, and that there was a need to study non-target effects because of its polyphagous behaviour. In retrospect, this information should have been sufficient to reject import and release of this species, but it was apparently ignored by those who considered release of this predator in Northwest Europe. The case of Harmonia releases in Northwest Europe underlines that there is an urgent need for harmonized, world-wide regulation of biological control agents, including an information system on risky natural enemy species

    Impact and oviposition behaviour of Ageniaspis fuscicollis (Hymenoptera: Encyrtidae), a polyembryonic parasitoid of the apple ermine moth, Yponomeuta malinellus (Lepidoptera: Yponomeutidae)

    Get PDF
    The distribution and extent of parasitism of the apple ermine moth Yponomeuta malinellus Zeller by the polyembyronic encyrtid parasitoid Ageniaspis fuscicollis (Dalman) were examined in a three year field study and related to oviposition behaviour in the laboratory. Ageniaspis fuscicollis attacks egg batches of its host and kills the final instar larvae, which feed gregariously from within tents. Host population densities in the field were low, from 1.5 to 2.2 tents per 100 leaf clusters, and parasitism increased from 7.8% to 18% over the three year period. Parasitism was independent of host density at the whole tree scale, but at the individual tent scale, the probability of a tent containing parasitized host larvae increased and percent parasitism decreased with the number of host larvae per tent. Observations on the oviposition behaviour of A. fuscicollis in the laboratory revealed that parasitoids distributed their eggs randomly within host egg batches. On average, they spent almost two hours on an egg batch and laid 44% of their egg load of 132 eggs into the first egg batch visited, leading to a mean of 1.4 eggs laid per host egg through frequent self-superparasitism of hosts. The percentage of eggs receiving one or more ovipositions was independent of the size of an egg batch, contradicting our field observations of inverse density dependence. Factors that might account for the differences in rates of parasitism and attack distributions between laboratory and field data are discusse

    Intraguild predation between the invasive ladybird Harmonia axyridis and non-target European coccinellid species

    Get PDF
    The coccinellid Harmonia axyridis (Pallas) has been used for augmentative and classical biological control in many environments. More recently it has invaded large parts of Europe and negative effects for native populations of aphidophagous coccinellids are beginning to emerge. Here we investigate intraguild predation (IGP) between H. axyridis and eleven native non-target European coccinellids, including less common species which have not been studied so far within this context of non-target effects. When first-instars of H. axyridis were paired with the native species, only Anatis ocellata (Linnaeus) and Calvia quatuordecimguttata (L.) were significantly superior to the former whereas H. axyridis was superior in three cases, i.e. against Aphidecta obliterata (L.), Coccinella septempunctata L. and Hippodamia variegata (Goeze). Non-significant results were obtained for all other pairings. Similar tests with the fourth larval instar revealed stronger IGP rates and H. axyridis was found to be superior in the interactions with Adalia bipunctata (L.), Adalia decempunctata (L.), A. obliterata, Calvia decemguttata (L.), C. quatuordecimguttata, C. septempunctata, H. variegata, Oenopia conglobata (L.) and Propylea quatuordecimpunctata (L.) whereas non-significant results were obtained for interactions with two other native species. Another experiment revealed that H. axyridis was able to prey more successfully upon egg of most native coccinellid species than vice versa. However, C. quatuordecimguttata eggs seem to be more protected against predation than those of the other species. Survival of first-instar H. axyridis was higher on conspecific eggs compared to eggs of any other species tested. Our results suggest that H. axyridis may become a threat to a wide range of native aphidophagous coccinellids sharing similar ecological niches except species showing high potential for chemical or physical protection

    Potential effects of oilseed rape expressing oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee Osmia bicornis

    Get PDF
    Despite their importance as pollinators in crops and wild plants, solitary bees have not previously been included in non-target testing of insect-resistant transgenic crop plants. Larvae of many solitary bees feed almost exclusively on pollen and thus could be highly exposed to transgene products expressed in the pollen. The potential effects of pollen from oilseed rape expressing the cysteine protease inhibitor oryzacystatin-1 (OC-1) were investigated on larvae of the solitary bee Osmia bicornis (= O. rufa). Furthermore, recombinant OC-1 (rOC-1), the Bt toxin Cry1Ab and the snowdrop lectin Galanthus nivalis agglutinin (GNA) were evaluated for effects on the life history parameters of this important pollinator. Pollen provisions from transgenic OC-1 oilseed rape did not affect overall development. Similarly, high doses of rOC-1 and Cry1Ab as well as a low dose of GNA failed to cause any significant effects. However, a high dose of GNA (0.1%) in the larval diet resulted in significantly increased development time and reduced efficiency in conversion of pollen food into larval body weight. Our results suggest that OC-1 and Cry1Ab expressing transgenic crops would pose a negligible risk for O. bicornis larvae, whereas GNA expressing plants could cause detrimental effects, but only if bees were exposed to high levels of the protein. The described bioassay with bee brood is not only suitable for early tier non-target tests of transgenic plants, but also has broader applicability to other crop protection products

    Distinctive Gut Microbiota of Honey Bees Assessed Using Deep Sampling from Individual Worker Bees

    Get PDF
    Surveys of 16S rDNA sequences from the honey bee, Apis mellifera, have revealed the presence of eight distinctive bacterial phylotypes in intestinal tracts of adult worker bees. Because previous studies have been limited to relatively few sequences from samples pooled from multiple hosts, the extent of variation in this microbiota among individuals within and between colonies and locations has been unclear. We surveyed the gut microbiota of 40 individual workers from two sites, Arizona and Maryland USA, sampling four colonies per site. Universal primers were used to amplify regions of 16S ribosomal RNA genes, and amplicons were sequenced using 454 pyrotag methods, enabling analysis of about 330,000 bacterial reads. Over 99% of these sequences belonged to clusters for which the first blastn hits in GenBank were members of the known bee phylotypes. Four phylotypes, one within Gammaproteobacteria (corresponding to “Candidatus Gilliamella apicola”) one within Betaproteobacteria (“Candidatus Snodgrassella alvi”), and two within Lactobacillus, were present in every bee, though their frequencies varied. The same typical bacterial phylotypes were present in all colonies and at both sites. Community profiles differed significantly among colonies and between sites, mostly due to the presence in some Arizona colonies of two species of Enterobacteriaceae not retrieved previously from bees. Analysis of Sanger sequences of rRNA of the Snodgrassella and Gilliamella phylotypes revealed that single bees contain numerous distinct strains of each phylotype. Strains showed some differentiation between localities, especially for the Snodgrassella phylotype

    Influence of soil on the efficacy of entomopathogenic nematodes in reducing Diabrotica virgifera virgifera in maize

    Get PDF
    The use of entomopathogenic nematodes is one potential non-chemical approach to control the larvae of the invasive western corn rootworm (Diabrotica virgifera virgifera LeConte, Coleoptera: Chrysomelidae) in Europe. This study investigated the efficacy of Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), Heterorhabditis megidis Poinar, Jackson and Klein (Rh., Heterorhabditidae) and Steinernema feltiae Filipjev (Rh., Steinernematidae) in reducing D. v. virgifera as a function of soil characteristics. A field experiment was repeated four times in southern Hungary using artificially infested maize plants potted into three different soils. Sleeve gauze cages were used to assess the number of emerging adult D. v. virgifera from the treatments and untreated controls. Results indicate that nematodes have the potential to reduce D. v. virgifera larvae in most soils; however, their efficacy can be higher in maize fields with heavy clay or silty clay soils than in sandy soils, which is in contrast to the common assumption that nematodes perform better in sandy soils than in heavy soils

    Quantification of toxins in a Cry1Ac + CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L.

    Get PDF
    Transgenic Cry1Ac + CpTI cotton (CCRI41) is increasingly planted throughout China. However, negative effects of this cultivar on the honey bee Apis mellifera L., the most important pollinator for cultivated ecosystem, remained poorly investigated. The objective of our study was to evaluate the potential side effects of transgenic Cry1Ac + CpTI pollen from cotton on young adult honey bees A. mellifera L. Two points emphasized the significance of our study: (1) A higher expression level of insecticidal protein Cry1Ac in pollen tissues was detected (when compared with previous reports). In particular, Cry1Ac protein was detected at 300 ± 4.52 ng g−1 [part per billion (ppb)] in pollen collected in July, (2) Effects on chronic mortality and feeding behaviour in honey bees were evaluated using a no-choice dietary feeding protocol with treated pollen, which guarantee the highest exposure level to bees potentially occurring in natural conditions (worst case scenario). Tests were also conducted using imidacloprid-treated pollen at a concentration of 48 ppb as positive control for sublethal effect on feeding behaviour. Our results suggested that Cry1Ac + CpTI pollen carried no lethal risk for honey bees. However, during a 7-day oral exposure to the various treatments (transgenic, imidacloprid-treated and control), honey bee feeding behaviour was disturbed and bees consumed significantly less CCRI41 cotton pollen than in the control group in which bees were exposed to conventional cotton pollen. It may indicate an antifeedant effect of CCRI41 pollen on honey bees and thus bees may be at risk because of large areas are planted with transgenic Bt cotton in China. This is the first report suggesting a potential sublethal effect of CCRI41 cotton pollen on honey bees. The implications of the results are discussed in terms of risk assessment for bees as well as for directions of future work involving risk assessment of CCRI41 cotton
    corecore